One-pot synthesis of triazolo[1,2-a]indazole-triones catalyzed by a novel magnetically and reusable green catalyst of Preyssler
Authors
Abstract:
An atom-efficient, eco-friendly, solvent-free, high yielding, multicomponent green strategy to synthesize triazolo[1,2-a]indazole-triones derivatives by the one-pot condensation of aldehyde, dimedone, and phenyl urazole under microwave Irradiationis presented. Reactions catalyzed by A novel nanomagnetic organic-inorganic hybrid catalyst (Fe@Si-Gu-Prs) was prepared by the chemical anchoring of Preyssler heteropolyacid (H14[NaP5W30O110]) onto the surface of modified Fe3O4 magnetic nanoparticles with guanidine-propyl-trimethoxysilane linker. A series of different substituted aromatic aldehydes including either electron-withdrawing or electron-donating groups used in this reaction participated well and gave the corresponding products in good to excellent yield. In this method, catalyst was isolated and reused several times, at least four times without significant loss of activity.
similar resources
Pr3+ doped CoFe2O4: A highly efficient, magnetically recoverable and reusable catalyst for one-pot four-component synthesis of multisubstituted pyrroles
A facile and highly efficient one-pot synthesis of multisubstituted pyrrole derivatives is reported via a four-component reaction of amines, aldehydes, acetylacetone and nitromethane using Pr3+ doped CoFe2O4 as a catalyst in solvent free conditions at 90°C. The catalyst is easily recoverable using magnet and could be reused without a significant loss of catalyti...
full textPr3+ doped CoFe2O4: A highly efficient, magnetically recoverable and reusable catalyst for one-pot four-component synthesis of multisubstituted pyrroles
A facile and highly efficient one-pot synthesis of multisubstituted pyrrole derivatives is reported via a four-component reaction of amines, aldehydes, acetylacetone and nitromethane using Pr3+ doped CoFe2O4 as a catalyst in solvent free conditions at 90°C. The catalyst is easily recoverable using magnet and could be reused without a significant loss of catalyti...
full textFe3O4@SiO2 nanoparticles: An efficient, green and magnetically reusable catalyst for the one-pot synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-dione derivatives
An efficient and eco-friendly method for the one-pot synthesis of 14-aryl-14H-dibenzo [a,i]xanthene-8,13-dione derivatives has been developed in the presence of Fe3O4@SiO2 core-shell nanoparticles. The multi-component reactions of 2-hydroxy-1,4-naphthoquinone, β-naphthol and aldehydes were efficiently catalyzed using novel nano-scale materials under reflux conditions. The present method offers ...
full textFe3O4@SiO2 nanoparticles: An efficient, green and magnetically reusable catalyst for the one-pot synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-dione derivatives
An efficient and eco-friendly method for the one-pot synthesis of 14-aryl-14H-dibenzo [a,i]xanthene-8,13-dione derivatives has been developed in the presence of Fe3O4@SiO2 core-shell nanoparticles. The multi-component reactions of 2-hydroxy-1,4-naphthoquinone, β-naphthol and aldehydes were efficiently catalyzed using novel nano-scale materials under reflux conditions. The present method offers ...
full textH6P2W18O62: A Green and Reusable Catalyst for the One-pot Three-Component Synthesis of Spirooxindoles in Water
Wells–Dawson tungsten heteropolyacid (H6P2W18O62) has been applied as an effective heterogeneous catalyst for one-pot synthesis of spiro[4H-pyran-3,3’-oxindoles] via reaction of various isatins, malonitrile and 1,3-dicarbonyl compound in water. The corresponding products were obtained in high yields. The catalysts were easily recycled and reused without loss of their catalytic activity.
full textEfficient one-pot synthesis of pyrazoles catalyzed by nano-crystalline solid acid catalyst
An efficient and green protocol for the synthesis of pyrazoles derivatives by one-pot reaction of different 1,3-dicarbonyl compounds with hydrazines/hydrazides has been developed using nano-sulfated zirconia, nano-structured ZnO, nano-g-alumina and nano-ZSM-5 zeolites, as the catalyst. The optical properties of the nano-structured catalysts and organic molecules were studied. The advantages of ...
full textMy Resources
Journal title
volume 7 issue 2
pages 1- 70
publication date 2017-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023